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1. INTRODUCTION

Spectral methods [4] are based on representing the solution
to a problem as a truncated series of smooth functions of the dependent
variables, They have been applied to the numerical simulation of a
variety of viscous flows, including the numerical simulation of turbulence
{15} and the numerical simulation of transition to turbulence [14] in
incbmpressible fluids. It may seem that spectral methods are limited
to problems where Fourier series arec appropriate in rectangular
geometries and spherical barmonic series are appropriate in spherical
geometries, In these cases, smooth solutions can be represented as
rapidly converging spectral series, leading to significant economies
over discrete approximations that lead to finite difference methods.

Spectral methods have now devecloped 'as a useful tool in areas
far removed from their original,and perhaps obvious, applications.
Transform methods [10] have allowed their application to problems
with general nonlinear and nonconstant coefficients, Orthogonal
polynomial expansions [4] have expanded widely the kinds of boundary
conditions amenable  to spectral treatment. New extensions of the
fast Fourier transform to nearly arbitrary Sturm-Liouvillé eiéen-
funct;bn bases [11] may improve the efficiency of spectral methods
based on exotic function bases. A fast, genefal iteration method
has improved the efficiency of solving general spectral eduations
so that spectral solution of problems in general complicated geometries
requires little more work than that required to solve the lowest-
order finite-difference approximation to the gproblem in the éomplex
geometry [12}, .

6ne kind of problem has not yet received much attention for
treatment by spéctral methods, namely, the approximation of dis-

continuous solutions by spectral methods. VSome early partial results



were encouraging. It was shown [13} that continuous solutions with

discontinuous derivatives are well representel spectrally and that the

accuracy advantages of spectral methods over finite difference methods
survive for such solutions,

In the present paper, we provide an initial glimpse into the
extension'of spectral methods to trcat discontinuous solutions with
shocks and contact discontinuities. The results are encouraging
It seems that spectral methods allow the resolution of shock fronts and
contact discontinuities by shock-capturing techniques with only one
grid interval acress the discontinuity. Of course, spectral methods
may also be used with shock—fittind technigues to revresent a perfectly

sharp discontinuity.

2. LINEAR HYPERBOLIC PROBLEMS

It has been shown {9] that by pre- and post- processing
discontinuous data it is possible to achieve high accuracy with
spectral approximations to discontinuous solutions of linear problems.

A standard model problem [1] 1is given by the one-dimensional

wave equation

%%(JL._L) + 9‘\3(x,tz = 0 (1)
X

with periodic boundary conditions on the interval 0 < x < 2w. With
nonsmooth initial data u(x,0) = f(x), the solution u(x,t) = f(x-é)
(extended periodically) is nonsmooth for all ¢t _and a Fourier-spectral
method‘sﬁould be expected to converge slowly. Nevertheless, resulis

obtained by pseudospectral Fourier solution of [1] on a uniform grid

are spectacular (at least in comparison with those obtained by such

techniques as the flux-corrected transport (FCT) algorithm [1]) . of



course, both the spectral and finite~difference results may be improved
using adaptive mesh-refinement methods to improve resolution near

discontinuities. In Fig. 1, the solution to (1) 1is plotted at

t = 47 (afte:r two full propagation periods over the spatial domain) with
f(x) = exp(-(x-")z/quz) so the solution is a Gaussian with width  2Ax,
where Ax = 2W/64 is the effective grid resolution with 64 Fourier
modes. The results plotted in Fig, 1 were obtained using a weak low-
pass filter to pre- and post- process the results [ see (22) below] .

In Fig. 2, similar plots are given for tre solution to (1) when
f(x) is a top-hat fun<tion. Here a stronger post-processing [see (21)
below] was necessary to remove large oscillaticns, due to the Gibbs
phenomenon, near the discontinuities. The particular post-processing
does nol appear to be too important for this problem; we used a one—sidéd
average in the neighborhood éf rapid changes of the solution. The
motivation for this choice is similar to that of the FCT algorithm [1].

The results plotted in Figs. 1 and 2 are obtained using 64 Fourier

modes, corresponding to 64 collocation points.

3. COMPRESSIBLE FLOW PROBLEWMS

In this Section, we study the applicaticn of spectral methods
to one-dimensional compressible flow problems. In Sec. 7, we compare
the results with those obtained by more coventional finite-difference
methods. The one-dimensional Eulerian equations of motion in a finite

shock tube are, in conservation fornm,

Y
4

3 F(W) =0 (-1< x< 1) (2)
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W= (,mEY, FGi) = uwa+ (0,p,pul (3)



where 0 is the mass density, m 1is the momentium density, E 1is
is the total cnergy density, p is the pressure and u = m/0 is

the velocity.

Ve assume the equation of state to be

p= (r-1) [E -3 ou?y; (4)

usually, we take y = 1.4, as is appropriate for a diatomic gas.

For simple shock tube problems, that involve only constant
states Separated by shocks and contact discontinuities, there is
no immediate need for high-order accurate numerical methods. However,
for more .complicated flow problems, especially in higher dimensions,

where there may be interacting shocks, rarefaction waves, contact
discontinuities as well as the interaction of shocks with boundary
layers and interfaces, it is necessary to have both high accuracy

in the interior of the flow, in the boundary layers, near the inter-
faces, as well as good representations of discontinuities., From

this point of view it seems appropriate to use the Chebyshev spectral
method since it provides both high interior accuracy and very high

resolution in the boundary l:zyer region [41],

Ve regard the classical simple shock tube problems as extremely
severe tests of spectral methods. After all, spectral methods are
designed to give good resolution of complicated flow structures
distributed through the flow domain and, since they arc based on
expansions in orthogonal functions, it would seem that isolated
Jocal jumps at shocks and ccntact discortinuities would be most
inhospitable for them. On the other haﬁd, it would seem that low-
order finite-difference methods would be best for treating shock
discontinuities because of their localized character. One of the
important conclusions of this paper is that the accuracy (or rather,

3



the resolution) advantages of spectral methods hold up in the

neighborhood of shock discontinuities, not just in regions of

smooth flows and boundary layers.

There are three ways to apply Chebyshev-spectral methods to
these problems, namely, collocation, Galerkin, and tau épproximations
[41. We choose to use the collocation (or pseudospectral) technique
here for two reasons., First, collocation is ;hé easiest and most
efficient method to apply for complicated prcblems. Also, since
collocation involves solving the equations in physical space rather
than in‘transform space with transforms usea only to evaluate
derivatives, boundary conditions are also easier to apply.

Let-us give a brief description of the ;ollocation method. At

each time step, we evaluate the components of F in (2) at the

points

X = cosnwij/N (0 < j< N)

b | (5)

->
Next, the Chebyshev expansion coefficients ’a’n of F are found from

. . N ,
i‘(xj) = L anTrlxy) (0 <3 < W), (6)

where Tn(x) is the Chebyshev polynomial of degree n defined by

- 1 .
T,(x) = cos(n cos 'x). Since Tn(xj) = cosﬂ1? it follows that

->
a =

N
2 1= men .
n ﬁ%: Z E:=--i~(xp) cos = (0 ; n< M (7)

n=0 “p



where Eo = EN = 2, &nd Exx= 1 for 0<n<N. Differentiating (6)
gives )

% N N

F z - -+

== = aT' =) s.T (8)

X T2 0N n=g nn
where

> 2 -+
= = b}
*n * g, p=n+1 P7p 9
p+n odd

Eqs. (7) - (8) are implemented using the fast Fourier transform.

In order to avoid having to perform order N2 operations to evaluate
- - -> - -»> -+ < -~ . . s

(9) we observe that Sy ° O.SN_l = 2NaN and sn(n < N-2) satisfie

the recurrence relation

+ > - > '
- < N-
gn S =S ot 2(n+1) a1 (n < N-2) (10)

Using (10), only O0(N) operations are necessary to obtain gn from
;n' Thus, using the fasE Fourier transform. evaluation of f?/Bx
from F requires only order N log N operations.
It should be noted that the collocation points xj are crovuded
in the neighborh&od of Xx=1, and x = =1, [x1 and Xy-1 are
located at distances of ﬂ2/2N2 from x .= 1,-1, respectively]. For
N.= 128, there are 40 points located in the interval 0,9¢< | x]1 < 1. This

high boundary resolution can be of great value when boundary layers or

interfaces are also present, but is wasteful for the simple test

problems of thé present paper.

Next, we describe some time marchini techniques., Let us denote

the discrete approximation for ; at collocation point H and time
n

. >n . . .. > >
step nlt by Wy the discrete approximation for F by Fj .

Then we advance in time using the two-step (modified Euler) method



N TR
. = w.llae@E 11
Wy L 3 At(ax). (11)
3
1
> nts _
g ol o (3E) 2 (12)
J J ] 35

This scheme results in a linear stability condition of the form

8 .
- (13)

Ia

At 5
- Nmax (|u]+c)

where ¢ 1is the sound speed, This condition is very severe; indeced,
using finite difference methods with N points leads to stability
restrictions like At = OC1/N). An altérnative approach is given in
[5] ahd [12] that avoids the latter difficulty. The approach described
in [5] yields'an unconditionally explicit stable scheme whereas that
described in [12] involves a very efficient implicit technique. )

In this paper, however, we present results gotten by using (11)

(12). Application of the other time marching techniques will be given

elsewvhere.

by, CONSERVATION PROPERTIES OF PSEUDOSPECTRAL METHODS

In this Section we discuss the conservation properties of pseudo-

spectral methods applied to a nonlinear system of equations. Consider the

W _ IF(W)
at ax

(1)
Wx,00 = F(x)
It is weli known that, in-general, no smooth solution can exist for all
time. Instead one seceks a weak solution defined by the requirement that

the integral relation



1@~y Brax at + [ J(x,003(x) = o (15)

be satisfied for all smooth test vectors $ which vanish both for large
t and on the boundary of thé domain.

It can be shown that as a result of the integral relation (14)
the weak solution must satisfy the Rankine-Hugoniot shock conditions.
Assume now that (14) is spatially discretized by the pseudospectral
Fourier method (see [4)]). By this we mean that GN(x,t) is
defined as the trigonometric interpolant of w(x,t) at the points
X = ﬁg%('j = 0, ..,,znbﬁu(x,t) is defined as the interoolant of F

~at xj, and one solvés the 2N + 1 vector equations

-»> : ?
Wy oFN :
3t (x,t) = % (xj,t) (j =0,...,2N) (16)

This discretization should be used only if the boundary conditions of
(14) are periodic with period 2w,

Following Lax and Wendroff [8] we can prove

Theorem 1: Assume that as No+w», JN converges boundedly to some vector

W. Then .W(x,t) 1is a weak solution of (14) with initial value 3.

Proof: Let 3 (x,t) be a periodic test function and let gN(x,t)
be the interpolant of § at «x = X5e Let gN(x) be the interpolant of
¢ at the same points.

Multiplying (15) by WN(xj) and summing one gets

N, oy N, 3F (W (x, )
) Yy (xy) 5p (x50 = ) by (xy) e -

j=0 3=0

We interpret now the sums on both sides of this result in terms of the

- trapezoidal integration rule, Since' wN»h and wNF& are trigonometric
polynomials of degree 2N, the trapezoidal rule is exact (seel2]). There-

fore, we obtain
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2% . e 7 21 o -

2r 9 > ) N
' (]) b () -—a—tﬂ(x,t)dx = {) JN(x,t)—a;N(x,t)ax = - g Fix,8) -5

We integrate now with_:espect to t to get +
oW © 27 BVN

2 had g —
7 dx [ dt $N(x't) 7?g(x't) + [ dt [ dx Fylx,t) —= =0
0 0 () 0

Integrating the left hand side by parts and taking into account that

Yplx,t) >0 t *+ ® we obtain
2" R 21 o 3, R 2y
- gxﬁN(x,O)wN(x,O)dx - (f) {)[wN(x,t) = (x,t) = Fylx,t)gg (x,t))lax dt = 0
or
27 27 o 8’;; 3-'3

b (x,000.(x) + [ [IW
7 a0t + ]

by - N _
(x,t) TRT(x’t) - FN(x,t) —5?4xft)]dx dt 0
letting N-+ = completes the proof of the Theorem.

Theorem 1 establishes the fact that the pseudospectral

Fourier method applied to problems with shocks yields the correct shock

Speed. The following argument [7]) asserts that this method can
achieve resolution of shock discontinuities over 1 effective grid interval.

If the numerical avpreoximation uap to an exact shock solution Uak

over the interval 0 < x<2n is smeared over a distance h near a shock

- of strength U then

1 : '
where the constant 3 obtains if the error Uex = Uap varies linearly

from 0 to U over 2 distance % h. On the other hand, it is, in

principle, possible that the first N Fourier coefficients of Uap

in an N term Fourier spectral calculation agree closely with those
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of Uoy* Since the nth Fourier coefficient a, of a stiock solution

on [0,2n behaves asymptotically as U/2mtn as n > @, it follows

that
27 2
2 2 20
é (uex - ap) dx < 2m Z N Ianl N
: |nl>5
Therefore,
6
h g N

Since the effective grid separation A 1is 2a/N, it follows that,

optimally,

o
7N
W
[~

or better than 1 grid interval resolution,

It is interesting to note that (16) implies that the component

of W, are conserved. In fact,é summing up both sides of (16) one gets

N

2N oW 2N oF,

N : N
] = (x.,8) = ] ==(x.,t)
520 at "3 =0 3x 3

By the same argument as before one can replace the sums by integrals to get

-»>

2m 271 3F .
' -d . - N (x,t) dx = Q
T é.wN(x,t) dx é 7;? '
Therefore
?“* 2n N
| é wN(x,t)dx = g wN(x,O)dx.
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For compressible flow problems, this shows that the mass, momentum, and

energy are conserved.
We would like now to demonstrate that the same

conservation properties that were estakblished for the pseudospectral

Fourier methcd hold also for the pseudospectral Chebyshev method. In

analogy to Theorem 7 we can prove :

-> . -
Theorem 2: Let YN and ?N be the pseudospectral Chebyshev approximation
>
described in (5) - (10) to equation (14), Then if wy converges to
-

w and $ is a smooth test function such that @(-1,t) = $(1,t) =0

v(x,o) =0 then w(x,t) is a weak solution of (14),

Proof: It is shown in [4, p. 15] that QN satisfies exactly the equation

aﬁ oF ’
1ﬁg = 15? + T(t) Uy-1 (X) P(x) (17

-

where UN-l is the Chebyshev polynomial of the second kind so that
Uer(xj)=0 for j =1,...,N~1 and P(x) is a polynomial of degree
1 that corresponds to the boundary condition. More precisely,
P(x) = 1-x when the boundary data is prescribed at x =-1 and P(x) = 1l+x
when the boundary data is prescribed at x = +1. Suppose $ is the

3 . N-3
interpolant of $/¢1—x at the points yj= cos\%?%? (j = 0:.‘.,N=3)

3=, ! .

then
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" since P(x)3 (X) is a polynonial of degrece N = 2 the last integral

at the right hand side of (18) vanishes.

The rest of the proof is similar to the proof of Theorem 1., Defining

~and integrating we obtain

1, 2 axst f @ B oy dx dt = 0
S Fn by e a1 ] Gy g - Fy i) 4% At =

> - -+
Since py * Juniformly and the derivatives of py converge similarly to the

-> B >
derivatives of V,and since wy~+ w , the proof is completed.
We are also able to show that the components of w are conserved, °

In fact since

a5 g
—ﬁ\]_ (x ) = fﬁ (x )
ot 73 ax 3 (19)

for all interior points xj, one can use the Clenshaw-Curtiss

guadrature formula [2] to get

? 3wN } 3wN
w——(x.)a. = = dx
520 ot 73" 73 -1 ot
N 3F 1 3F
N N
y —=—(x)a, = [ =—=dx - F (1) - p_(-1)
520 ax 7373 _lax N N
where
N/2
4 ¢ ik
o = = - il hd
37 %3 TN kio 14kl N



=13~
Therefore (19) gives

d l+ >
ac / Wy dx = ¢
-1

where g represents the contribution from the boundaries. 1In the case

aEN/ax, g =0

3 * -»>
of homogeneous boundary conditions where Wy and

so that both vanish at the boundaries.

.

1. 4 1., (20)
| Il wy (x,t) dx = _{ wy (x,0) dx,

demonstrating conservation.

5. BOUNDARY CONDITIONS

Boundary conditions play a crucial role in the application of spectral
methods. Incorrect boundary treatment may give strong instabiliticgiﬂlcontrast
to finite difference methods in which instabilities due to boundaries usually

appear as relatively weak oscillations. On the other hand, as odposed

to high-order finite-difference methods, spectral methods normally do not
require numerical boundary conditions in addition to the physical
boundary conditions required by the partial differential equation.

For shock tube problems, we must specify all the flow variables

"at supersonic inflow points, two flow variables at subsonic inflow

points, and one flow variable at subsonic outflow points. If we over-
specify or underspecify the boundary conditions, spectral calculations
are usually sopectacularly unstable..

At subsonic outflow points, it is not satisfactory to speciff
arbitrarily any one of the flow variables m,p,Q or E. With arbitrary

outflow boundary conditions, one can obtain oscillations that originate
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at the boundary. The outflow boundary conditions used here were obtained
following the analysis given in [3 . VWe advance one time step uithout
imposing the boundary conditions and denote the calculatéd quantities by
;c' Wé observe that if x‘= +1 1is a subsonic outflow point, the incoming

.characteristic quantity at x = +1 |is .

vi=p =~ (pe)u
whereas the outgoing characteristic quantities are
2
vy = p+ (Pc) u, vg = p-cp.

Let us assume that oae flow variable is given on the inflow character-

isﬁic at x = +1. ThLen we solve the system

vy = (v)les vy = (v3), (21)
for the two remaining flow variables at x = 1. This procedure yields

a stable scheme with no oscillations emanating from the boundaries., 1In
contrast to inflow-outflow boundaries whose treatment is quite systematic

by the above procedure, material boundaries evidently do require boundary
conditions in addition to those required by the mathematical theory of .
characteristic initial value problems. At characteristié surfaces,

like material boundaries, the specification of one flow variable, like

u = 0, should suffice. However, we find that it is necessarv ta supb&ement
this boundary condition at onlv one characteristic boundaxy hv one
additioﬁal condition, like p given. An analysis of these boundary

conditions will be given elsewhere.
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6. SHMOOTHING AND FILTERIMNG

The approximation of discontinuous functions by truncated
Chebyshev polynomial expansions exhibits the Gibbs phenomenon near jumps
and has two point oscillations over the whole region [4) ., Similar
oscillations are observed when approximating shock waves in inviscid
flows, These oscillations may induce instabilities in nonlinear problems
since they can interact with the smooth part of the solution and be
amplified., It is essential for stability reasons either to elininate
completely these oscillations or to control them in such a way that
stability is not affected.

Several methods to achieve stable computations have been investigated
includiﬁg artificial viscosity, Shuman filtering, and a new spectral
filtering method to be described below, Ve will report results
obtained by the lattgr two methods.

Shuman filtering involves applying the filter

n n (22)
wj J j+'2‘ (Wj +1 ).

n
£
+
@
—

n
-w.) + 0.
wJ)

1 (Wl —u
Iy ] -

j-1

The idea>is to choose smoothing factors ej that vanish in smooth
parts of the solution and become large only in the neighborhood of

discontinuities. Following Harten and Tal-Ezer [€)  we choose

- O, =P =2(0, =0 )+(P 0,
5.1 - B' 3#27 54172004 = I+ (0= R ) | (23)
) . —p 4o -
19542 3+1|+2| j+1 jl+|pj p~;-1|

where 0«<g<l 1is a suitable constant. Typically B = 0.0l in

our calculations,

A more intriguirg kind of filtering is based on the following "
idea. If a low-pass spectral filter just strong enough to remove
those high frequéncy waves that lcad to numerical instabilities is

applied to the inviscid compressible flow equations, the spectral
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equations will givg bad oscillations near shock fronts and other
discontinuities. However, as recently pointed out by Lax [71,
these oscillatory solutions obtained by a high-order method like

a spectral method should contain enough information to be able to
reconstruct the proper nonoscillatory discontinuous solution by a
post—prqcessing filter. The idea is that very weal filtéring

or damping to stabilize together with a final tcosmetic'! filter to
_ present the results should be able to give gréat improvemehts in

resolution.

In practice, we use a low-pass filter for stabilizing purposes

that is of the form
1 k<k
24)

(k) =( _4 (k__ko)4

e )c>k0

where k is a spectral (wavenumber) index, ko

depends on the strength of the shock and o 1is a constant of oréer
1. For typical fluid dynamical shocks, we choose k0 ~%-N vhere 'N
is the maximum wavenumber in the spectral represention of the flow.
We have found that, for moderazte shocks, the results are insensitive
to the detailed form of (24). However, it is important that f(k)

be low-pass so f(k) = 1 for k< k in order that large-scales

0’
be treated very accurately (without phase error) by the spectral
nethod.

Finally, we explain how to pést-process the numerical resultis
to retrieve smoothed results with localized discontinuities from the
noisy, but stable, calculations. Our method is to first determine
the location of the discontinuities in the flow and then to apply a
Shuman filter to smooth the ‘data on either side of the discontinﬁitics .
(without using data from the opposite side of the discontinuity in the

smoothing process), The key to the success of this procedure is the

apparent ability of the spectral results to preserve information on
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the precise location of discontinuities., ~ Similar post-nrocessing
methods do not work so well on finite-difference results
because, in such calcuiations, the shock position does not seem to bLe

localized with one grid interval.

The location of discontinuities is found by an examination of
the spectral coefficients. One may assume that ﬁhe smooth part of the
solution is well represented by the first few coefficients, while the
leading behavior of the high-order coefficients is generated by the
discontinuities. As a rule of thumb, we examine the middle third of
the coefficients, since the highest third may be unreliable due to the
stabilizing smoothing.

The expansion coefficients ay should be fit by an expression

of the fornm:

’ (25)
2N

3

]
[
Il e~100

B_ A (x.) | % < kg

s=1

where Sis the number of.shocks, Ap (x) 1is the spectral coefficient of
a Heaviside function with a jump at X and B ., Xg &re the intensitics
and locations, respectively, of the various shocks.

In our case {(Chebyshev collocation) it may be readily

verified that kT
' sin ?T(L+l/2)

1l
A (X)) = 5 gin kx (6<k<N)
k Noosin kL (26)
A = L+1/2
: N
= X s 1
"AN(X) = 55 Sin T (L + 2)

with L an integer related to X by:

Q%( L < cos M (27)

cos
N
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. The saluiion of (25) for B, X vroceeds as follows: First

we rewrite (25) in the form:

- def . S .
Nak sin 54 oA = sgl Bs 51n(ku)s)
with -
- 1,7
Wg = (L(xs) 3R

Now remark that a sequence

bk = sin kw

Satisfies the identity:

Poy * Peer 98F (ab), = cos w by
- T

Therefore, the values ws are simply related to the eigenvalues of the
summation operator @ . They may be computed independently of Bg
the jump magnitudes are found after the wg are determined, hv a least
sguares vrocedure.

We applied this algorithm to the test case of several Heaviside
functions added ko a smooth background, .such as eX, Shock locations
are recovered exactly They are assigned to tke nearest "midpoint"
by (27). "ith N = 64, the predicted shock intensities are correct
within a few percent, for as many as 7 shocks. Moreover, when more
shocks are sought than are actuallv present, ;ome W become imaginary, -
which serves as a useful check. .
”“Whén"ébtnaI‘éoﬁﬁﬁéétionai“dété'éré“ia5d£-fé the "shock locator"
program described above, several jumps may bhe identified (of course,

with the number of shocks not specified beforehand), One may then

proceed in differcnt ways:
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a) Smooth between the shock locations, using one sided smoothing
at the shocks.
'b{ Subtract the sum of Heaviside functions and smooth the

result in physical space (e.g., using a Shuman filter)

c) Subtract the coefficients of the Heaviside functions found,
and smooth in the coefficient space (e.g., by deleting high

order coefficients).

Of these, method (a) seehs the most robust as it needs no values for
the actual shock intensities. 1In computer experients, all three methods
perform comparably.

There are many fine adjustments that have to be made on the genzial
algorithm to obtain the best results. On mildly oscillating data, on<e may
obtain spurious shocks due to larze differences from 'point to point';
sometimes, since several such oscillations are interpreted as shocks
the algorithms errs simply because S 4is too large. We are investigating
some ways of avoiding spurious shocks, namely, imposing an entrqpy
condition, ignoring shocks of low intensity, weighting the coéfficients
or data, and iterating the smoothing procedure. There is not yet an
approach which will solve all hard problems, although rcasonably good

results are not hard to obtain,
.7. NMUMERICAL RESULTS
The first model problem is a .shock tube problem with a diatonic

gas (y = 1.4) satisfying supersodic inflow at x = -1 and subsonic outflow

at x = +1. The initial conditions are ] a
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P =Py, P =Py, u=u (-1l<x < 1), (28)
while the conditions applied at the inflow point «x = -1 are

P =Py P= r(s.pl). u = G(E,ol,pl,ul) (29)

where

(-1 /Py (30)
/337 P1

_leAr = }

and £= P, /P, is the strength of resulting shock. With these initial
and boundary conditions, a pure shock propagates from x = -1 toward

x = +1 at a speed

| /b +6p '
v = u, + _.]_'.__._2_ (3]_)

s ‘ 1 7p1

In Fig. 3, we plot the density structure of the resulting shock
wave at t = 0,1 determined by the Chebyshev "spectral method with
N = 64 polynomials, ¢ =5 4n (28) - (31), and Py =p;=1U, =1,
The exact pressure jump across this shock wave is 5 and the density
jump is 2.81818. The shock speed is 3.48997. In these calculations
the low-pass filter (24) 1is applied every time step and the final
results are cosmetically filtered by a onc-sided Shuman filter (22)
with constant ej,.replaced bv one-sided smonthing at shocks. Also,
"we nlot in Fig. 3 the results obtained using a localized Shuman filter
(22) with (23) at every time step. The latter result is similar tc
resultslobtained using a von Neumann-Richtmyer ertificial viscositv. ... _.
Observe that the cosmetically filte{éd results vield a one-point shock
while the iocalized Shuman filter yiélds a three-point shock. Similar
results are obtained applving the localized Shuman filter only every

10N steps or so.
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In Fig. 4, we give a similar plot of the density across a

4 at t = 0.005, Here the density jump

sﬁrong shock with &= 10
is 5.9965. The results ploted in Figs. 3,4 demonstrate that
ouf methods achieve high resolution shocks without significant
oscillations.

The second mnodel problem is a shock tube problem with

X = *¥1 as materizl boundaries., The initial conditions at t = 0

are:

1.0 - x <0

p = 0.55 x =0 (32)
0.1 x>0
1.0 x <0

p= {0.5625 x =0

0.125 x>0

while the boundary conditions‘are

p= 1 X = =1 (33)

For moderate t, the solution to this problem consists of one shock,
one contact discontinuity and a rarefaction wave.

_'A variety of difference methodq;for solution of the flow that
evolves from (32) - (33) have been compared by Sod [16)] , e ﬁave
solved this problem uSing the spectral filtering method with N = 64

Chebyshev polynomials to represent the flow (in contrast to Sod's
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.100 point grid), The results are plotted in Fig. 5 at t = 0.3. Both
the shock and contact discontinuity are resolved over only one grid
point. The overall solution is in good agreement with the exact
solution to the problem. However, without the ‘'cosmetic'
final filter, the results are highly oscillatory. Evidently, the
highly 65cillatory, but stable, spectral solutions do contain
enough information to reconstruct sharp discontinuities.

Finally, we consider a problem in which we test for
possible degreading of the solution due to the nonlinear interaction
between oscillations arising from interacting shock‘waves; The

initial conditions are

P=p=u =1, - 0.9 < x<1 .

P=2.p=1r(2,1, u=1u(2,1,1,1)s - 1< x<-0.9
(34)
p=25 p=1r(2.5,r(2,1),u = E(z‘slr(zll))l 2,3(2,1,1,1))1

These iﬁitial conditions correspond to a § = 2.5 shock lying a
distance 0;1 behind a & = 2 shock. The stronger shock overtakes
the weaker shock and generates a single coalesced shock and associated
contact discontinuities and rarefaction wave. The resulting density
at t = 0.4 after shock coalescence is plotted in Fig. 6. Observe
that the cosmetic filtering method gives good resoluton of both
the shock and the contact discontinuity while the localized Shuman
filtering method deteriorates in the neighbnrhood of the contact.

In conclusion, we believe that the .excellent results achieved by
the éresent initial investigation 'of spectral methods for highly
compressible flows suggests that these methods may prove usgful for

problems of practical interest. Such applications are now underwav.
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FIGURE CAPTIONS

Figure 1. A plot of the solution to the wave equation (1) with
£(x) = exp(—(x-n)z/quz) at t = 4r when the initial pulse has
been transported two full periods. A Fourier spectral method
with N = 64 modes and a weak low-pass filtz—~ was used. The
plotted results are in excellent agrcement wi’h the exact
solution f(x-t). ,

Figure 2. Same as Fig. 1 except f(x) = 1(IX-UI<%")v
0(|x-ﬂ|>%ﬂ. Here a one-sided average was used as a post-filter
to remove the oscillations, Again the plotted results at 't = 4rn
are in excellent agreement with the exact soluéion f(x-t).
?igure 3. A plot of the density p vs x for the shock tube problem
with initial conditions (28) - (29) with shock strength § = 5.

at t = 0.1 obtained using the pscudospectral method with N = 64

- Chebyshev polynomials. (a) Results obtained applving the low-pass

f;lter (24) at every time sten. (b) Results obtained by applying

the post-processing Shuman filter (22) with constant Gj [except

- one-sided at the shock] to the results plotted in (a). (c¢)

Results obtained using a Shuman filter (22) with (23) [with no
low-pass filter] at every time step.

Figure 4. , Same as Figure 3 except £ = 104,,t = 0.005.

‘

Figure 5. Plots of the density, pressure, velocity, and.énergy
at t = 0.3 for the shock tube nrobhlem with iaitial-houndary
conditions (32)-~(33). The Chebyshev spectral esquations were
truncated at I = 64 polynomials and the spectral filtering

meitbod was applied to smooth the final results, .

' Figure 6. A plot of the density p vs x for the two-shock

problem with initial conditions (34). Here a § = 2.5 shock

lies initially a distance 0.1 behind a £ = 2 shock. The density
is plotted at | t =0.4, after shock coalescence. {a) Low-pass
filter (24) only. (b) Post-processing filter (22) with
constant 6. [exccoot one-sided at calculated discontinuities]
applied to the results of (a). (c) Shuman filter (22) with

(23) at every time step.
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